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Abstract-A nonlinearly thermoelastic half-space is subjected to combined time-dependent normal and shear
loading. The solution is obtained by a numerical method which is shown to yield accurate results by
comparison with some known analytical solutions which can be obtained in some special cases. When shocks
are involved, it is shown that the numerical results satisfy alI the Rankine-Hugoniot jump conditions as well
as the entropy condition across the shock.

INTRODUCTION
Wave propagation problems in thermoelastic media are known to be mathematically difficult due
to the coupling of mechanical and thermal effects. Even in the linear theory of thermoelasticity
substantial difficulties are encountered in obtaining closed form solution to the complete coupled
system of equations, and usually only solutions valid for small times are obtained, see for
example the review of Nowacki[l].

When finite wave propagation in heat conducting materials is considered, the equations
become even much more complicated due to the presence of nonlinearity. To our knowledge the
only existing solutions of the complete equations including thermal terms in nonlinear dynamic
elasticity are the dilatational constant wave profile given by Bland [2] and the quasi-transverse
constant profile discussed by Craine [3]. Johnson [4] applied perturbation and asymptotic methods
to the problem of a nomally loaded half-space.

In [5] the authors solved the problem of a nonlinearly thermoelastic half-space subjected to
time-dependent normal loading by employing a numerical method of solution. It was shown that
the developed numerical scheme was accurate and reliable by comparison with analytical
solutions which can be obtained in some special cases. Furthermore, the numerical method was
able to handle successfully shocks which are known to occur in nonlinear problems.

In this paper the more complex and interesting problem of finite amplitude one-dimensional
wave propagation in a thermoelastic half-space subjected to combined normal and shear loading
is considered. It is known that in the presence of nonlinearity, normal and shear disturbances are
coupled and a propagating shear disturbance cannot exist by itself in the absence of a normal
disturbance. This nonlinear effect leads to a much wider range of phenomena in the propagation
of waves. Such combined effects are the quasi-transverse waves, shocks and the constant wave
profile. Here we generalize our previous numerical method in order to deal with the present case
of three displacement components.

The accuracy and reliability of the generalized scheme is checked by comparison with the
following special cases for which analytical results can be derived. (a) The quasi-transverse
simple wave solution which exists in a nonconducting material[2]. (b) The quasi-transverse
thermoelastic shock[3]. In this case the success of the numerical process in handling shocks is
illustrated by showing that the numerical results satisfy all the Rankine-Hugoniot jump
conditions as well as the entropy condition. (c) Circularly polarized thermoelastic shocks [2] for
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710 J. ABOUD! and Y. BENVENISTE

which it is shown here that the entropy condition is unconditionally satisfied. (d) Quasi-transverse
constant wave profile [3]. This very interesting case in which the waves propagate steadily in a
thermoelastic material without change in shape is generated here numerically.

FORMULATION OF THE PROBLEM

Consider a thermoelastic material whose specific internal energy is given in a non-dimensional
form by

(1)

where T I and p are the non-dimensional base temperature and density respectively in the
undeformed state, S is the non-dirnensional specific entropy and A, /J-, K, 11, { are material
constants. In (1) II and 12 are the first and second invariants of the Green strain tensor 'Yi/

(2)

where

(3)

u, are the components of the displacement vector n, and U/.i = (ouJ/oad and (at, a2, a3) are the
non-dimensional cartesian coordinate of the particle in the undeformed state.

We choose as in [5] the reference dimensional units co2 = (A +2M/p, t, p and do for the
velocity, temperature, density and length respectively. The resulting dimensional quantities for
the internal energy, entropy, time and material constants are given in [5].

For an internal energy given by (1) with { = 0 we obtain the "quadratic material" for which
the internal energy contains as far as second order terms in 'Yij and the entropy. On the other hand
the quadratic material does not admit either quasi-transverse shock waves or the
quasi-transverse constant wave profile which will be discussed in the sequel. The term with { in
(1) is the necessary lowest order term which has to be added to the quadratic material in order that
the two mentioned important phenomena exist.

We treat the one-dimensional motion of a homogeneous isotropic thermoelastic half-space
a1 ~ 0 so that all quantities depend on the initial position aI and time t. Accordingly, we obtain the
following expressions for II and 12 in (2)

11 = m\ +!Cm/+ m/+ m/)=A(al, t)}
12 = A2+!(m22+ m/)

where mi(at, t) are the displacement gradients mi = (oudoal)' Hence (1) reduces to:

U(m;, S) = TIS + 2~ A2+; [A2+~(m/+m32)]

+¥S2_ KSA +; [A2+~(m/+m/)r

(4)

(5)
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The equations of motion and heat conduction in the absence of body forces and thermal sources
in the Lagrangian description are given by

(6)

(7)

where Lit are the Piola-Kirchhoff stress components given by

where

c= (,\ +2p,)/p - K
2
/'T/)

N= m22+ m/

9= T- T1

and T is the temperature given by

In (7) Q(ah t) is the Lagrangian heat flux which, by adopting Fourier law is given by

aT
Q=-k-

aal

(8)

(9)

(to)

(11)

where k is the coefficient of heat conduction which is assumed to be constant. The dimensional
expressions for the heat flux and heat conductivity are given in [5] in terms of the above chosen
reference units. By examing the stress components in (8) it is obvious that up to first order terms,
the classical stress-strain-temperature relations are obtained.

Using (8) in (6) we obtain after some manipulations the following equation of motion

(12)

where A is the following symmetric matrix
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A II = cA+ 2((2A3 + AN) + (1 + ml [c + 2((6A2 + N)] - ~ 8
p p ~

A 12 = (1 + ml)m2Rl

An = (1 + ml)m 3R1

A zz = R2m/ +R3

A Z3 = m2m3R2

R1 = C + 2(2A + 6A2 + N)/p

R2 = c +2«4A +6A2 + N + l)lp

R3 = cA + IJ-Ip + (NIp + 2(AN + A2 +2A3)/p -~ 9.
71

The matrix B is given by

(13)

and 8 is the vector whose components are 8.
The heat conduction equation (7) and (10) and (11) takes the form

From thermodynamic considerations it can be shown [2] that

At t = 0, the half-space at 2:0 is described by the initial conditions

u(at, t) =Uo(atl )

aU(ah t)at = vO(al) at t = 0,

8(ah t) = (1o(at)

and for t >°it is subjected at at = °to the boundary conditions

mi(O, t) = Mt), i = 1, 3,}
8(0, t) = g(t)

(14)

(15)

(16)

(17)
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where fi(t), g(t) are prescribed time functions. The hyperbolic-parabolic system of nonlinear
equations (12) and (14) together with the initial and boundary conditions (16-17) and the
boundedness of the displacements and temperature as a -+ 00 govern completely the subsequent
motion for t > O.

FINITE·DIFFERENCE FORMULATION

A finite-difference formulation is given herein in order to solve the above nonlinear system
together with its initial and boundary conditions. We shall show, by comparison with some
analytical conclusions which could be drawn in some special circumstances, that the obtained
numerical solutions are excellent. The present formulation is a direct generalization of that given
in [5] and consequently we shall present it briefly.

We introduce the space divisions .:1al and time intervals .:1t. Let

i, n = 0, 1,2, .... (18)

The system of equations (12) can be solved by an explicit approximation which yields the
displacements at the time step t +M as follows

(19)

where L is a spatial difference operator which expresses the discretized version of the
differential expression on the right hand side of (12). Furthermore at each time step an iterative
process is applied in the form

u;"+'·J = 2u;" - u;"-' +(.:1t)2{ w3L [U,"+1·J-I, 9,"] +w2L [u;", 9;"] +w,L[U,"-I, 9;"-I]}/(W, +W2+ W3)

(20)

where j is the number of the iteration, j = 1,2, ..., and WI are weight numbers. This iterative
procedure is applied in order to remove numerical oscillations which are known to occur near
shock waves, see [5] for a more detailed discussion.

As to the nonlinear heat conduction equation (14), it is solved implicitly yielding the following
system of algebraic equations at each time step, in the unknowns 8;"+1 (i = 1,2, ..., M).

where

(22)

(23)

and m~, mr. (I = 1, 3) are the central difference approximations of (aullaal), (a 2U,/aa1at)
respectively. In these equations M = aT/.:1al with aT being a point within the half-space far
enough from the boundary such that the values of the displacements and temperature have no
influence for a preassinged degree of accuracy on their values at smaller distances al < aT for a
given range of space and time. For more details regarding the numerical formulation see [5].

All results in this paper are given for the mesh space increment .:1al = 0·01 with j = 1 in (20),

USS Vol. 11. No. 6-D



714 J. ABOUD! and Y. BENVENISTE

M =400 in (21) and the weight factors WI = -1, W2 = 10, W3 =O. Apart from the quasi-transverse
constant wave profile treated in the last section, the following material constants are chosen

A = t p, = t K = 1, 'l] = 2, k = 1.

Clearly this choice satisfies the inequalities (15).

THE EFFECT OF HEAT CONDUCTION ON QUASI-TRANSVERSE SIMPLE WAVES

Let us consider the limiting situation of a nonconducting material for which k =0 (adiabatic
case). It is known[2] that the corresponding solution to this case can be obtained from the
isentropic situation, for which S == 0, as long as shocks are absent. On the other hand, the solution
to the isentropic problem is obtained by solving the system of equations (12) after setting K = 0
which corresponds to a nonlinearly elastic medium. Consequently we consider an elastic
half-space a I ;::: 0at rest for t sOwith normal and shear loadingon its boundary, at t > 0, as follows

,\ +2p, 2
ml(O, t) = - 2('\ + p,) [YI(t)]

m2(O, t) = YI(t)

m3(0, t) = 0

where Y is a positive coefficient and l(t) is a smooth rising function of time given by

(24)

(25)

with H (t ) being the Heaviside step function. This function rises smoothly from zero at t = 0 up to
1 at t = 2'7' where '7' is a chosen parameter.

It can be shown[2] that with (24) the nonlinear elastic equations (12) (with K = 0) admit, for
small amplitudes (but not infinitesimal), the quasi-transverse simple wave solution given by

ml(al, t) =- 2~/}:;) [Y/(t - V(~2»)r
m2(aJ, t) =Y/(t - V(~2»)

m3(at, t) = 0

where v(m2) is the velocity of the acceleration wave given by

with

2

if! =, -~- 2(:+ p,)

(26)

(27)

(28)



Anonlinearly thermoelastic half-space under time-dependent normal and shear loading 715

and subject to the condition", < O. This condition ensures that shocks will not form in the present
case of loading conditions at the boundary.

The quasi-transverse simple wave (26) provides a direct analytical check to the numerical
scheme in the special case of k = O. In Fig. 1the analytical and numerical solutions for the normal
and tangential displacement gradients are shown at the station al = 0·3. The applied load rise time
is 2T = 0·2 and' = 0which obviously satisfy the condition", < O. The expressions for ml(al, t) in
(26) and v(m2) in (27) are in an error of '}'4 which is very small for our present choice of 'Y = 0·25.
The obtained numerical and analytical solutions are in excellent agreement and are up to the scale
of the plot indistinguishable.

For a heat conducting half-space (with k = 1) the corresponding numerical solution for the
displacement gradients as well as the entropy, temperature and heat flux are shown at Fig. 1at the
station al =0,3, with the same boundary conditions (24) and 8 =0 at al =O. This figure exhibits
very well the effect of heat conduction on the various dependent variables in the present situation
of smooth loading.

QUASI·TRANSVERSE THERMOELASTIC SHOCKS

In the present section solutions which contain propagating shocks in a thermoelastic
half-space are considered. For a finite conductivity, k'# 0, the propagation of shocks are
governed by the following jump conditions for the momentum, energy and compatibility across a
shock[2]

(29)
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Fig. 1. Quasi-transverse simple waves (dashed line) at station at =O·3in a nonconducting half-space with the
boundary conditions (24) (1 =0·25 and 27 =0,2). The analytical and numerical solutions coincide. The solid
lines show at the same station the numerical solution for the displacement gradients, entropy, temperature

and heat flux for aconducting half-space (k = 1) with the boundary conditions (24) at the base temperature.
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1 1 2 [ aU]p[Q]= V[U]+2: V[V;] + Vi ami

V[md+ [vd = 0

(30)

(31)

where Vi = (au;/ at) is the particle velocity, V is the propagation velocity of the shock and
[h] = h- - h+, h+ and h- being the values of h must ahead and just behind the discontinuity,
respectively. To these conditions we must add the eptropy condition

(32)

as well as the condition that shocks in a conducting solid governed by the Fourier law (11) are
necessarily isothermal, i.e.

[T] =0. (33)

For shock waves propagating in a thermoelastic medium which is previously undeformed at the
base temperature T I Craine [3] obtained the following solution for a quasi-transverse shock of
small amplitudes in aI, a2 directions

(34)

and

V2=~+ 4~ [A + 2Jot +2~ _p~2 - (A + 2Jot _p~2Y/ (A + Jot _p~2)] (m!)2. [l +0(mn2
]

(35)

where m1 denotes the final value of mi. In addition, the entropy condition (32) yields the
following necessary and sufficient condition for the existence of a quasi-transverse shock in a
thermoelastic medium

(36)

This inequality imposes a stringent condition on the material if it is to admit such a shock, and for
{ = 0 (36) is violated. On the other hand for our choice of the material constants this condition is
satisfied for { = 1.

In order to produce the quasi-transverse shock in the thermoelastic half-space which is
initially at rest at the base temperature TI, we apply the following boundary conditions at al = 0

with y = 0·25.

m2(0, t) = yH(t)

m1(0, t) = -0·5[(A + 2Jot - pK 2 /T/ )/(A + Jot - pK 2 /T/ )]-lH(t)

m3(0, t) = 0

8(0,t)=O

(37)
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In Fig. 2 numerical solutions to the displacement gradients, particle velocities, entropy,
temperature and heat flux are shown at station at =0·3 for the two different cases' =0 and
, = 1. Whereas for' =0 smooth solutions are obtained, the case with' = 1 yields in contrast
propagating shock waves in accordance with the above analytical considerations.

Let us check now the fulfillment of the jump conditions (29-31) and the entropy condition (32)
across the shock. A direct measurement of the velocity from the arrival time of the shock at
station at = 0·3 yields the value Y = 0·6 whereas the predicted value according to (35) is 0·58.
Furthermore, [md = -0'091, [m2] =0·25, [vd =0·054, [V2] = -0,15 and [S] = -0,0275. For these
values we obtain [aU/amd =-0·0323 as against y 2[md = -0'0327, and [aU/am2] =0·0913 as
against y 2[m2] = 0·09 showing excellent fulfillment of (29). Similarly the compatibility conditions
(31) are well satisfied. As to the energy condition (30), we obtain again by a direct measurement
that [Q] = -0'015, whereas the right hand side of (30) yields the value -0,017. For the entropy
condition (32) we have YT[S] = -0,015 showing that, up to the accuracy of the measuring
procedure, (32) holds as equality. Figure 2 shows also clearly that there is no jump in the
temperature across the shock, i.e. [T] = 0 in agreement with (33). We conclude, therefore, that
the resulting numerical solution yields the correct jumps across the shock according to the above
conditions.

CIRCULARL Y POLARIZED THERMOELASTIC SHOCKS

For an isotropic thermoelastic material, the internal energy in the case of one-dimensional
wave propagation has the general dependence form U(ml, N, S) where N was defined in (9).
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Fig. 2. Quasi-transverse wave (dashed line, ,= 0) and shock (solid line, ,= 1) at station a, =0·3 in a

thermoelastic half-space subjected to the boundary conditions (37) with i' = 0·25.
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Suppose that ml, m2, m3 and T are given ahead of the shock. Then since [T] = 0 across a shock,
equations (29) with (10) are three equations for the four unknowns ml, m2, m3 behind the shock
and V. By considering a situation for which

Bland[2] obtained the solution

and

[:~] =0,

[mtl =O}
[N] =0 .

(38)

(39)

(40)

Hence mh N are continuous across the shock represented by (38) and allow only the direction of
the component of m2, m3 to be discontinuous, thus obtaining a circularly polarized shock
propagating with the velocity (39) in a thermoelastic material.

We shall show now the interesting property that for a circularly polarized shock propagating
in a thermoelastic material the jump of the heat flux across the shock is zero, Le.

[Q] = O.

For this purpose let us apply the following identity

(41)

(42)

which yields together with the compatibility conditions (31) the following expression for [v/] in
(30)

(43)

Similarly we obtain for [VI (au/ami)] in (30)

Hence, (30) takes the form

1 1 [( aU)2]-[Q]=V[U]-- - .
p 2V ami

(44)

(45)

But for the circularly polarized shock in a heat conducting solid, it is obvious from (10), (33) and
(40) that the shock is isentropic, i.e. [S] =0, which imply together with (40) that [U] =o.
Furthermore, for this shock



Anonlinearly thermoelastic half-space under time-dependent normal and shear loading

[(:~y] = [ (:~y] +[(:~y] +[(:~y]

=4 [(;~y m/]+4 [(;~y m/]

=4 [(;~y N]

= 4 {[(:~y]+((;~y)+} [N] +4N+ [ (;~y]

=0.

719

Therefore [Q] = O.
Another interesting property of this shock in a heat conducting material is that the entropy

condition (32) is always satisfied. Indeed with (33), (41) and [8] = 0, the inequality (32) is
unconditionaly satisfied.

Let us produce now a circularly polarized shock by applying the following initial and
boundary conditions for the thermoelastic half-space

and

ml(al, t) = 0·2 )
m2(al, t) = 0·3

t=O
m3(al, t) = 0·1

8(al, t) = 0

ml(O, t) = 0,2)
m2(0,t)=0'1 0

t> .
m3(0, t) = 0·3

8(0, t) = 0

(46)

(47)

In Fig. 3 the numerical solution for the displacement gradients and the entropy are shown at
station al =0·3 for' =O. According to (40) it is expected that ml(al, t) =0·2. The maximum
deviations, of the numerical solution from this value, on the other hand, is 0·01 which is obtained
at t = 0·45. The maximum temperature deviation from the base temperature T1 is 10-4

, and the
maximum value of IQI is 0·002 indicating that 8and Qare practically zero. Furthermore, the
velocity of the shock according to (39) is predicted to be V = 0,68, whereas by a direct measuring
we obtain 0·66. We can conclude, therefore, that the circularly polarized shock is obtained with
an excellent agreement with the previous analytical considerations and serves as a direct test to
the accuracy and reliability of the proposed numerical scheme when shocks are involved.

QUASI-TRANSVERSE CONSTANT WAVE PROFILE

As another check to the accuracy of the numerical scheme, it will be applied in order to
produce the interesting case of the quasi-transverse constant wave profile which, if it exists, it
propagates steadily within a nonlinearly thermoelastic material without a change in shape or
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Fig. 3. Displacement gradients and entropy for a circularly polarized shock at station at = O·3 within a
thermoelastic half-space with the initial and boundary cOilditions (46) and (47) respectively.

magnitude at a constant velocity. This wave was treated by Craine [3] who showed that it consists
of two separate parts, a dilatational and transverse part, which. are joined together.

Let a = al - Vt where V is the constant velocity of the wave, and without loss of generality
let the axis be oriented such that m3 == O.

In the dilatational part ao < a < 00 and

such that

mt = ml(D)(a),
S= S(D)(a),

(48)

(49)

as a ~ 00. a = ao is the junction point, where the transverse part starts to exist, at which
m/D

) = mo and mo is given by [3]

(50)

For a smooth constant profile not containing a shock, the equation that determines the variation
of the displacement gradient across the wave in this part, i.e. its variation from m I (D) = 0 in the
initial state, where the medium is at rest, to its final value ml(D) = mo in the dilatational part is
given by

(51)

which yields an equation for m /D) in term of a.
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In the transverse part -00 < a < ao, and

721

ml = ml(T)(a),

s= S<n(a),

and such that

(52)

(53)

as a ~-oo. The variation of the displacement gradient ml(T)(a) across the wave in this part is
given by

fm! k a8/ 2 2 2 d-pV(a-ao)= -a- [U-O'5V(ml +m2)] mi.
mo ml

(54)

For small (but not infinitesimal) displacement gradients Craine [6] obtained the following solution
in the dilatational part

ml(D)(a) = 15m f exp [-p(a - ao)]

S(D)(a) = (A + /-L)ml(D)(a)/pK

where

and

From (55) it follows that

Obviously, conditions (15) yields that p > 0 so that (49) are satisfied.
The velocity of the constant wave profile can be shown to be

and m f, m! are related by

In the transverse part the corresponding solution is

(55)

(56)

(57)

(58)

(59)

(60)
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ml(T)(a) = mf{l + (5 -1) exp [-q(a - ao]} (61)

m2(T)(a) = mb (62)

S(T)(a) = 5(A + /L)m.(T)(a)!pK (63)

where

y = {1- exp [-q(a - ao)]}I/2

and

= pVT. { 1_ pK
2

2( - /L f· (64)
q k1'/ 1'/ (2( - /L)(A + /L) - /L 2 •

It follows that a necessary condition for the existence of the constant wave profile is that q < 0,
which imposes quite. strigent conditions on the parameters of the material. These conditions
ensure also that V 2in (59) is real. In order that ul(D)(a) in (58) passes to u.(T)(a) continuously at
a = ao, it follows from (61) that

(T) {5 - 1 5 5 - I}Ul (a)=mT a---exp[-q(a-ao)]---ao+--.
q p q

For u2(T)(a) we obtain from (62)

(65)

(66)

In order to produce numerically the constant wave profile in a thermoelastic half-space we
choose here the following material

A = t /L = t K = 1, 1'/ = 2, (= ft

which satisfies the inequality q < 0, so that the propagation of the wave in the half-space is
possible.

The appropriate initial conditions at t = 0 are

{u/D)(a) for a >ao
u.(al, 0) = ul(T)(a) for a <au

u2(al,0) = {u2(~(a)
for a >ao
for a <au

and

aUi= _Vau1 (i = 1,2).
at aa
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In addition

for a> ao
for a <aD

where by (10), OlD), O(T) are given in terms of SlDl in (56) and S(T) in (63), respectively.
The boundary conditions at al = 0 are

{mllD)(a) a >ao
mt(O, t) = mllT)(a) a <aD

m2(0, t) = {m})(a)
a >ao
a <aD

and

{O(D)(a) a >ao
0(0, t) = OlT)(a) a <ao.

In Fig. 4 the numerical solutions for the displacement gradients and temperature are shown at
station al =0·3 within the half-space, for three different values of heat conductivity coefficients,
namely k =0,01, 0'1,1. For the junction point we choose ao =0·2. We choose also the final value
m! = 0·1 which yields according to (60)the value mt = ..,...0·0066 and according to (59) V = 0·5.

A direct comparison between the numerical and analytical results shows excellent agreement
between the two solutions which especially for k = 0·1 and k = 1are up to the scale of the plot
indistinguishable. We can conclude, therefore, that the numerical results yield, in the present
interesting case too, a very accurate solution.
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Fig. 4. Numerical solution for the displacement gradients and temperature for the constant wave profile at
station at =0·3 within a thermoelastic half-space, when the coefficients of heat conduction are k =0,01,

k =0·1 and k = I.



724 J. ABOUD! and Y. BENVENISTE

Fig. 4 exhibits well the effect of finite conductivity on the thickness of the propagating
constant wave profile which is, as expected from the previous expressions of the various
dependent variables, proportional to the heat conductivity coefficient.

CONCLUSION

A numerical scheme is presented for the solution of one-dimensional coupled nonlinear
equations of motion in a thermoelastic half-space subjected to normal and shear time-dependent
loading. The reliability of the method is checked and demonstrated by comparisons with some
analytical conclusions which can be derived in some special cases. The present method can be
applied to other unsolved thermoelastic problems. It can be also extended and applied to
investigate nonlinear wave propagation in a generalized thermoelastic material which possesses a
relaxation time for thermal effects appropriate for heat conduction at low temperatures, and
yielding a finite thermal wave velocity. For nonlinear dilatational wave propagation this problem
has been discussed recently by Beevers [7].
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